What awaits the Fish Feed Industry towards 2030? Current Trends & Expectations

Prof.Dr. Tufan Eroldoğan

Cukurova University, Faculty of Fisheries Dept. of Aquaculture

Outline

Global aquaculture & Challenges in the Aquaculture

Same old story and «new love story» Strategic ingredients and future direction

Future challenges and expectations

Global aquaculture & challenges

Global macro trends

Population Growth in 2050

Data sources: Before 1940: Kremer (1993) – "Population Growth and Technological Change: One Million B.C. to 1990"; After: UN Population Division (2012), including population projection (medium variant) The data visualizations is taken from OurWorldinData.org. There you find the raw data and more visualizations on this topic. Licensed under CC-BY-SA by the author Max Roser.

Global problems

Global Risks Report 2023

Top 10 Risks

"Please estimate the likely impact (severity) of the following risks over a 2-year and 10-year period"

2 years

10 years

WORLD ECONOMIC FORUM

1	Cost of living crisis	1	Failure to mitigate climate change
2	Natural disasters and extreme weather events	2	Failure of climate-change adaption
3	Gececonomic confrontation	3	Natural disasters and extreme weather events
4	Failure to mitigate climate change	4	Biodiversity loss and ecosystem collapse
5	Erosion of social cohesion and societal polarization	5	Large-scale involuntary migration
6	Large-scale environmental damage incidents	6	Natural resource crises
7	Failure of climate-change adaption	7	Erosion of social cohesion and societal polarization
8	Widespread cybercrime and cyber insecurity	8	Widespread cybercrime and cyber insecurity
9	Natural resource crises	9	Geoeconomic confrontation
10	Large-scale involuntary migration	10	Large-scale environmental damage incidents
	Risk categories	Geopolitica	al 💼 Societal 🚥 Technological

Source: World Economic Forum, Global Risks Perception Survey 2022-2023

Food supply security – Blue solution

Oceans to become key to resolving «global protein needs»

70% of the Earth is covered by oceans, but only 2% of our food is obtained from the sea.

The Earth's surface 70% 30% Food production 2% 98% Image: The Earth's surface covered by water Image: The Earth's surface covered by land Image: Food produced in the water* Image: Food produced on land* Image: The Earth's surface covered by land Image: Food produced on land*

Source: NCE Seafood Innovation

Source: Statista 2022; WRI, 2022

Blue transformation- 3 objectives

OBJECTIVE 1

Sustainable aquaculture intensification and expansion satisfies global demand for aquatic food and distributes benefits equitably.

OBJECTIVE 2

Effective management of all fisheries delivers health stocks and secures equitable livelihoods.

OBJECTIVE 3 Ubdated value chains ensure the social.

ensure the social, economic and environmental viability of aquatic food systems.

Source: FAO 2022

Blue transformation: «meeting expactations»

Source: FAO 2022

Total fisheries and aquaculture production «a new record 218 million ton» in 2022

Source: FAO 2022

Total production cost «Aquafeed»

70-75%?

Global compund feed production in 2022

Source: 2023 Alltech Agri-Food Outlook

Main constraints for global compound feed production

Survey respondents identified the biggest agri-related challenges in their country.

*Multiple choice question: Numbers indicate number of times the option was selected.

Source: 2023 Alltech Agri-Food Outlook

Main constraints for global compound feed production

Feed cost back as the top concern for industry participants, 2022

Industry pessimism due to economic and market uncertanities, 2022

Source: GOAL Survey 2022, Rabobank 2022

Global commercial aquafeed and marine fish production

Source: Tacon et al. 2022

 $2020 \rightarrow 2030$ aquaculture and aquafeed production – **Global***

	Confidence interval (80% & 95									
Production Ort.	Lo.80	Hi.80	Lo.95	Hi.95	Feedx1000	Ort.	Lo.80	Hi.80	Lo.95	Hi
2030 93.604	91178	96031	89893	97315	2030	72.596	67361	77831	64590	80

*The quatities of fish & crustacean species farmed in freshwater and sea water are taken into account.

Source: Eroldoğan et al. (in preparation)

Same old story and «new love story» Strategic ingredients and future direction

«Alternative» raw material for the current growth

GMO Crops -----

Poultry ByProducts

Cereals

Yeast

Rapeseed

Macroalgae

Sunflower

Faba Bean

Herring

Microalgae

Zooplankton

Fish ByProducts

Anchoveta

Source: Brett Glencross, IFFO

Ingredient evaluation – raw ingredient quality

- 1) Sustainability
- 2) Compositional analysis
 - Nutrients, protein, energy, AA, FA etc.
 - Anti-nutrients, evolved in a protective or developmental role
- 3) Palatability & Feed intake
- 4) Digestibility, Appareant digestibility coefficients
- 5) Funtionality, durability, expantion, oil absorbtion, water stability
- 6) Growth, gain, FCR, feacal production, product quality

Fish meal & Fish Oil meet all these criteria Most certainly a finite or an endangered resource

Ingredient evaluation – raw ingredient quality

The FM&FO with the greatest puschasing power takes a growing share of the supply.

Source: Brett Glencross, IFFO

FM substitutes – Percentage of FM used in aquafeeds 1995-2020

There are several factors to consider when using feed ingredients to replace fishmeal including:

- Nutritional value
- Customer acceptability
- Availability
- Price or cost
- Effects on growth
- Effects on health status

Source: Tacon & Metian 2008

«same old story» replacement of FM & FO in aquafeed

Current litelature – try to find functional raw ingredients

North American Journal of Aquaculture 81:13-39, 2019 © 2018 American Fisheries Society ISSN: 1522-2055 print / 1548-8454 online DOI: 10.1002/naaq.10067

FEATURED PAPER

Thoughts for the Future of Aquaculture Nutrition: Realigning Perspectives to Reflect Contemporary Issues Related to Judicious Use of Marine Resources in Aquafeeds

Giovanni M. Turchini School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia

Jesse T. Trushenski* Riverence, 120 State Avenue Northeast #1058, Olympia, Washington 98501, USA Received: 28 February 2020 Revised: 29 May 2020 Accepted: 15 June 2020 DOI: 10.1111/anu.13138

REVIEW

WILEY

A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds

Institute of Aquaculture, University of Stirling, Stirling, UK

Abstract

Correspondence Brett D. Glencross, Institute of Aquaculture, University of Stirling, Stirling, UK. Email: b.d.glencross@stir.ac.uk

The choice of strategies used to assess ingredients can have a strong impact on the interpretation of their quality. In an attempt to standardize the assessment process, a structured approach using five steps for assessing the quality of ingredients was proposed over a decade ago. Since then, there has been considerable progress in the

MDPI

check for

The Application of Single-Cell Ingredients in Aquaculture Feeds—A Review

Brett D. Glencross ^{1,*}⁽⁰⁾, David Huyben ^{1,2} and Johan W. Schrama ³

- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; david.huyben1@stir.ac.uk
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Aquaculture and Fisheries Group (AFI), Wageningen University and Research, 6700 HB Wageningen, The Netherlands; johan.schrama@wur.nl
- * Correspondence: b.d.glencross@stir.ac.uk

Received: 1 June 2020; Accepted: 30 June 2020; Published: 16 July 2020

Abstract: Single-cell ingredients (SCI) are a relatively broad class of materials that encompasses bacterial, fungal (yeast), microalgal-derived products or the combination of all three microbial groups into microbial bioflocs and aggregates. In this review we focus on those dried and processed single-cell

Whilst the aquaculture sector continues to grow and make an ever increasing contribution to world food supplies, there is a need to ensure that the sector continues to develop in a socially, economically and environmentally sustainable manner, in line with the United Nations sustainable development goals. The present paper focusses on the major perceived sustainability issues related to feed inputs for finfish and crustacean aquaculture species, including sustainability issues related to feed formulation and ingredient selection, feed manufacture and feed quality, on-farm feed use and impacts, and fish quality and food safety.

Aquaculture: sustainable aquafeeds; fish-in fish-out (IFFO): sustainable development; feed manufacture: onfarm management

«Current» aquafeed in diverce species cultivated

Raw materials in formula vary with species

Oils and additives

Cereals (wheat, corn, cassava, rice, faba,...)
 Oilseeed meals (soybean, rapeseed, cottenseed, peanut,...)
 Plant protein concentrates (soy, wheat gluten, corn gluten, peas)
 Marine proteins (fishmeal, squid, krill,...)

Source: Dr. Jorge Dias presentation (https://www.open.edu/openlearncreate/mod/page/view.php?id=181866)

Changes in Norwegian Salmon feed formulation 1990-2020

- <u>71% of Norwegian salmon feed</u> consists of plant sources.
- <u>>95%</u> of salmon feed raw materials are imported.
- By 2030, all raw materials are aimed to be from <u>sustainable</u> <u>sources.</u>

Evaluation of aquafeed formulation

Changes in ingredient vs. trophic levels of cultured species

Source: modifed from van Riel et al., 2023

Alternative- there will be a need for «circular raw materials»

Usage rate of raw materials usable in human food

Source: modifed from Chary et al. (2023)

Novel «**blue**» feed ingredients

For novel ingredients to become relevant, they must be sustainable, meet well-established nutritional needs, and have high technical qualities

Sustainability should be measured along the entire value chain and include measures for both resource use, emissions and economical viability

Minimize use of natural resources

- Energy
- Area (incl. competition for food crops and land from bioenergy)
- Freshwater
- Fully utilize all bioresources (incl. animal by-products)

Minimize emissions and toxic materials

- GHG and local emissions
- Biodiversity and environmental ecosystem degradation
- Waste

Maximize sustainable economic growth

- Competitive prices in a global market
- National, sustainable value creation
- New value chains and circular business models

A common denominator for success with sustainability will be to establish production in circular hubs with shared resources.

Source: Future ingredients for Norwegian salmon feed Report 2022

Current & future potential blue raw materials

Production potential summarized

Source: Future ingredients for Norwegian salmon feed Report 2022

Future challenges & expectations

Future challenges & expectations

Protecting Ocens while thinking alternative feed ingredients.

What is often overlooked in many studies of future food security is:

- □ Economic impact of changes in supply
- Demand due to changes in food prices,

household income,

□ Consumer preferences.

«feed cost» ve «global» expectations towards 2030

- Rational growth (production and aquafeed) strategies should be implemented...
- By-products are no longer a niche, circularity is going to become increasingly vital.

- Blue alternative sources should be used. No competition with human food sources / food-competing ingredients!
- A general strategy should be developed for regional biological resources. Local raw materials to be used...
- Importance of «sustainability» will grow and become more objective...

Thank you for your attention

Prof.Dr. Tufan Eroldoğan

Cukurova University, Faculty of Fisheries, Dept. of Aquaculture **mtufan@cu.edu.tr**

www.fao.org/gfcm